Online Course
Automated Reasoning: satisfiability
EIT Digital via Coursera
-
66
-
- Write review
Overview
Class Central Tips
Several basic examples are given to get the flavor of the applications: fitting rectangles to be applied for printing posters, scheduling problems, solving puzzles, and program correctness. Also underlying theory is presented: resolution as a basic approach for propositional satisfiability, the CDCL framework to scale up for big formulas, and the simplex method to deal with linear inequallities.
The light weight approach to following this course is just watching the lectures and do the corresponding quizzes. To get a flavor of the topic this may work out fine. However, the much more interesting approach is to use this as a basis to apply SAT/SMT yourself on several problems, for instance on the problems presented in the honor's assignment.
Syllabus
-This module introduces SAT (satisfiability) and SMT (SAT modulo theories) from scratch, and gives a number of examples of how to apply SAT.
SMT applications
-This module shows a number of applications of satisfiability modulo the theory of linear inequalities (SMT)
Theory and algorithms for CNF-based SAT
-This module describes how a rule called Resolution serves to determine whether a propositional formula in conjunctive normal form (CNF) is unsatisfiable. It is shown how an approach called DPLL does the same job, and how it is related to resolution. Finally, it is shown how current SAT solvers essentially implement and optimize DPLL.
Theory and algorithms for SAT/SMT
-This module consists of two parts.
The first part is about transforming arbitrary propositional formulas to CNF, leading to the Tseitin transformation doing this job such that the size of the transformed formula is linear in the size of the original formula.
The second part is about extending SAT to SMT, in particular to dealing with linear inequalities. It is shown how the Simplex method for linear optimization serves for this job; the Simplex method itself is explained in detail.
Taught by
Hans Zantema
Related Courses
-
Automated Reasoning: Symbolic Model Checking
EIT Digital
-
Operations Research
Indian Institute of Technology Roorkee, NPTEL, Jadavpur University, CEC
-
Introduction to Enumerative Combinatorics
Higher School of Economics
5.0 -
Competitive Programming for Beginners
Moscow Institute of Physics and Technology
-
Mathematics for Machine Learning: Linear Algebra
Imperial College London
2.9 -
Differential Equations for Engineers
The Hong Kong University of Science and Technology
4.9
Reviews
0.0 rating, based on 0 reviews