Basic Modeling for Discrete Optimization
University of Melbourne and The Chinese University of Hong Kong via Coursera
-
122
-
- Write review
Overview
Class Central Tips
Optimization is a common form of decision making, and is ubiquitous in our society. Its applications range from solving Sudoku puzzles to arranging seating in a wedding banquet. The same technology can schedule planes and their crews, coordinate the production of steel, and organize the transportation of iron ore from the mines to the ports. Good decisions in manpower and material resources management also allow corporations to improve profit by millions of dollars. Similar problems also underpin much of our daily lives and are part of determining daily delivery routes for packages, making school timetables, and delivering power to our homes. Despite their fundamental importance, all of these problems are a nightmare to solve using traditional undergraduate computer science methods.
This course is intended for students interested in tackling all facets of optimization applications. You will learn an entirely new way to think about solving these challenging problems by stating the problem in a state-of-the-art high level modeling language, and letting library constraint solving software do the rest. This will allow you to unlock the power of industrial solving technologies, which have been perfected over decades by hundreds of PhD researchers. With access to this advanced technology, problems that are considered inconceivable to solve before will suddenly become easy.
Watch the course promotional video here: https://www.youtube.com/watch?v=hc3cBvtrem0&t=8s
Syllabus
- MiniZinc introduction
- In this first module, you will learn the basics of MiniZinc, a high-level modeling language for discrete optimization problems. Combining the simplicity of MiniZinc with the power of open-source industrial solving technologies, you will learn how to solve applications such as knapsack problems, graph coloring, production planning and tricky Cryptarithm puzzles, with great ease.
- Modeling with Sets
- In this module, you will learn how to model problems involving set selection. In particular, you will see different ways of representing set variables when the variable has no constraints on its cardinality, has fixed cardinality and bounded cardinality. You also have to ensure all model decisions are valid decisions, and each valid decision corresponds to exactly one model decision.
- Modeling with Functions
- In this module, you will learn how to model pure assignment problems and partition problems, which are functions in disguise. These problems find applications in rostering and constrained clustering. In terms of modeling techniques, you will see the power of common subexpression elimination and intermediate variables, and encounter the global cardinality constraint for the first time. MiniZinc also provides constraints for removing value symmetries.
- Multiple Modeling
- In the final module of this course you will see how discrete optimization problems can often be seen from multiple viewpoints, and modeled completely differently from each viewpoint. Each viewpoint may have strengths and weaknesses, and indeed the different models can be combined to help each other.
Taught by
Prof. Peter James Stuckey and Jimmy Ho Man Lee