Online Course
Big Data Essentials: HDFS, MapReduce and Spark RDD
-
75
-
- Write review
Overview
Class Central Tips
In this 6-week course you will:
- learn some basic technologies of the modern Big Data landscape, namely: HDFS, MapReduce and Spark;
- be guided both through systems internals and their applications;
- learn about distributed file systems, why they exist and what function they serve;
- grasp the MapReduce framework, a workhorse for many modern Big Data applications;
- apply the framework to process texts and solve sample business cases;
- learn about Spark, the next-generation computational framework;
- build a strong understanding of Spark basic concepts;
- develop skills to apply these tools to creating solutions in finance, social networks, telecommunications and many other fields.
Your learning experience will be as close to real life as possible with the chance to evaluate your practical assignments on a real cluster. No mocking, a friendly considerate atmosphere to make the process of your learning smooth and enjoyable.
Get ready to work with real datasets alongside with real masters!
Special thanks to:
- Prof. Mikhail Roytberg, APT dept., MIPT, who was the initial reviewer of the project, the supervisor and mentor of half of the BigData team. He was the one, who helped to get this show on the road.
- Oleg Sukhoroslov (PhD, Senior Researcher at IITP RAS), who has been teaching MapReduce, Hadoop and friends since 2008. Now he is leading the infrastructure team.
- Oleg Ivchenko (PhD student APT dept., MIPT), Pavel Akhtyamov (MSc. student at APT dept., MIPT) and Vladimir Kuznetsov (Assistant at P.G. Demidov Yaroslavl State University), superbrains who have developed and now maintain the infrastructure used for practical assignments in this course.
- Asya Roitberg, Eugene Baulin, Marina Sudarikova. These people never sleep to babysit this course day and night, to make your learning experience productive, smooth and exciting.
Syllabus
What are BigData and distributed file systems (e.g. HDFS)?
Solving Problems with MapReduce
Solving Problems with MapReduce (practice week)
Introduction to Apache Spark
Introduction to Apache Spark (practice week)
Real-World Applications
Taught by
Ivan Puzyrevskiy, Alexey A. Dral, Emeli Dral and Евгений Рябенко
Tags
Related Courses
-
Cloud Computing Applications, Part 2: Big Data and Applications in the Cloud
University of Illinois at Urbana-Champaign
3.0 -
Hadoop Platform and Application Framework
University of California, San Diego
1.9 -
Big Data Emerging Technologies
Yonsei University
-
Learning Hadoop
-
Big Data Analysis with Scala and Spark
École Polytechnique Fédérale de Lausanne
3.0 -
Big Data
University of California, San Diego
1.5
Reviews
1.7 rating, based on 3 reviews
-
Nati is taking this course right now.
The pronunciation of some of the teachers was so bad I had to switch to transcripts. That didn't help much as some of the sentences made no sense from the grammatical point of view. -
Anonymous is taking this course right now.
The course covers a lot of useful information about Hadoop, MapReduce, and Spark, but there are some hitches, too. First, the accents of the instructors can be very thick. I found that I had to listen to each lecture twice, once to get a general sense... -
Anonymous is taking this course right now.
The content of the course is good, but the grading app and the whole infrastructure provided are terrible. For example, the docker image they tell you to use to work on your assignments on your local machine uses a different python version than the environment against which your code is tested. The external "Autograder" tool they use is often broken, making it stressful to reach the deadlines.
It takes forever to fix things that have nothing to do with the things you actually want to learn. Waste of time.