Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of California, San Diego

Genomic Data Science and Clustering (Bioinformatics V)

University of California, San Diego via Coursera

Overview

How do we infer which genes orchestrate various processes in the cell? How did humans migrate out of Africa and spread around the world? In this class, we will see that these two seemingly different questions can be addressed using similar algorithmic and machine learning techniques arising from the general problem of dividing data points into distinct clusters.

In the first half of the course, we will introduce algorithms for clustering a group of objects into a collection of clusters based on their similarity, a classic problem in data science, and see how these algorithms can be applied to gene expression data.

In the second half of the course, we will introduce another classic tool in data science called principal components analysis that can be used to preprocess multidimensional data before clustering in an effort to greatly reduce the number dimensions without losing much of the "signal" in the data.

Finally, you will learn how to apply popular bioinformatics software tools to solve a real problem in clustering.

Taught by

Pavel Pevzner and Phillip Compeau

Reviews

3.5 rating, based on 2 Class Central reviews

Start your review of Genomic Data Science and Clustering (Bioinformatics V)

  • Anonymous

    Anonymous completed this course.

    Highly recommend the course and the specializations to all learners who are serious about learning algorithms. This course goes deeply into developing hard and soft k mean clustering algorithms. Very tough course.
  • Profile image for Alex Ivanov
    Alex Ivanov

    Alex Ivanov is taking this course right now.

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.