Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of Pennsylvania

Computational Thinking for Problem Solving

University of Pennsylvania via Coursera

Overview

Computational thinking is the process of approaching a problem in a systematic manner and creating and expressing a solution such that it can be carried out by a computer. But you don't need to be a computer scientist to think like a computer scientist! In fact, we encourage students from any field of study to take this course. Many quantitative and data-centric problems can be solved using computational thinking and an understanding of computational thinking will give you a foundation for solving problems that have real-world, social impact. In this course, you will learn about the pillars of computational thinking, how computer scientists develop and analyze algorithms, and how solutions can be realized on a computer using the Python programming language. By the end of the course, you will be able to develop an algorithm and express it to the computer by writing a simple Python program. This course will introduce you to people from diverse professions who use computational thinking to solve problems. You will engage with a unique community of analytical thinkers and be encouraged to consider how you can make a positive social impact through computational thinking.

Syllabus

  • Pillars of Computational Thinking
    • Computational thinking is an approach to solving problems using concepts and ideas from computer science, and expressing solutions to those problems so that they can be run on a computer. As computing becomes more and more prevalent in all aspects of modern society -- not just in software development and engineering, but in business, the humanities, and even everyday life -- understanding how to use computational thinking to solve real-world problems is a key skill in the 21st century. Computational thinking is built on four pillars: decomposition, pattern recognition, data representation and abstraction, and algorithms. This module introduces you to the four pillars of computational thinking and shows how they can be applied as part of the problem solving process.
  • Expressing and Analyzing Algorithms
    • When we use computational thinking to solve a problem, what we’re really doing is developing an algorithm: a step-by-step series of instructions. Whether it’s a small task like scheduling meetings, or a large task like mapping the planet, the ability to develop and describe algorithms is crucial to the problem-solving process based on computational thinking. This module will introduce you to some common algorithms, as well as some general approaches to developing algorithms yourself. These approaches will be useful when you're looking not just for any answer to a problem, but the best answer. After completing this module, you will be able to evaluate an algorithm and analyze how its performance is affected by the size of the input so that you can choose the best algorithm for the problem you’re trying to solve.
  • Fundamental Operations of a Modern Computer
    • Computational thinking is a problem-solving process in which the last step is expressing the solution so that it can be executed on a computer. However, before we are able to write a program to implement an algorithm, we must understand what the computer is capable of doing -- in particular, how it executes instructions and how it uses data. This module describes the inner workings of a modern computer and its fundamental operations. Then it introduces you to a way of expressing algorithms known as pseudocode, which will help you implement your solution using a programming language.
  • Applied Computational Thinking Using Python
    • Writing a program is the last step of the computational thinking process. It’s the act of expressing an algorithm using a syntax that the computer can understand. This module introduces you to the Python programming language and its core features. Even if you have never written a program before -- or never even considered it -- after completing this module, you will be able to write simple Python programs that allow you to express your algorithms to a computer as part of a problem-solving process based on computational thinking.

Taught by

Susan Davidson and Chris Murphy

Reviews

4.7 rating at Coursera based on 1385 ratings

Start your review of Computational Thinking for Problem Solving

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.