Get started with custom lists to organize and share courses.

Sign up

Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Computational Photography

Georgia Institute of Technology via Coursera

3 Reviews 174 students interested
Found in Programming

Taken this course? Share your experience with other students. Write review

Overview

The goal of this course is to introduce you to the basics of how computation has impacted the entire workflow of photography (i.e., from how images are captured, manipulated and collaborated on, and shared).  

The course begins with a conceptualization of photography as drawing with light and the capturing of light to form images/videos.  You will learn about and understand how the optics and the sensor within a camera are generalized, as well as learn about and understand how the lighting and other aspects of the environment are also generalized through computation to capture novel images. 

Pre- and post-processing techniques used to manipulate and improve images will be discussed.  Activities in this course are selected to give you first hand experience with the power of the web and the Internet for both analyzing and sharing images.  

This course is interdisciplinary and draws upon concepts and principles from computer vision, computer graphics, image processing, mathematics and optics.

We look forward to your engagement and participation with both the course and its discussion forums.

About the TA
Denis Lantsman is the TA for the class. Denis is a graduate of Harvey Mudd College, and is currently finishing his MS in Machine Learning at Georgia Tech. He is responsible for managing the coursera site, monitoring the forums for student feedback, creating the homework assignments and quizzes, as well as recording weekly tutorials to help students with their programming.

Syllabus

Week 0 (Module 0):  Introductions with an overview of the course structure and content.  Topics covered in this module include a description of what is Computational Photography (i.e., whereby examples of dual photography and panoramas are described) and reasons for studying this emerging interdisciplinary field .

Week 1 (Module 1):  Overview of what is a digital image.  Topics covered in this module are image processing and filtering, with emphases placed upon point processes, smoothing, convolution, cross-correlation, gradients and edges.

Week 2 (Module 2):  Overview of cameras with emphases placed upon the pinhole camera and optics (e. g., lenses, focal length), exposure time and sensors.          

Week 3 (Module 3):  Feature detection, matching and correspondence. The panorama pipeline and some examples. HDR and tone mapping.

Week 4 (Module 4): Overview of light fields, texture synthesis, image retargeting, video, advanced topics.

Taught by

Irfan Essa

Tags

Help Center

Most commonly asked questions about Coursera Coursera

Reviews for Coursera's Computational Photography
3.0 Based on 3 reviews

  • 5 star 33%
  • 4 star 0%
  • 3 star 33%
  • 2 star 0%
  • 1 star 33%

Did you take this course? Share your experience with other students.

Write a review
  • 1
Jonathan G
1.0 4 years ago
by Jonathan is taking this course right now and found the course difficulty to be very hard.
this had too much math for my taste. This isn't for me, but geared to math geniuses. Not for me!
Was this review helpful to you? Yes
Indranil S
3.0 3 years ago
Indranil completed this course.
Was this review helpful to you? Yes
Colin K
5.0 4 years ago
by Colin completed this course.
Was this review helpful to you? Yes
  • 1

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.