Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Online Course

Analyzing Data with Python

IBM via edX

Overview

LEARN TO ANALYZE DATA WITH PYTHON

Learn how to analyze data using Python in this introductory course. You will go from understanding the basics of Python to exploring many different types of data through lecture, hands-on labs, and assignments. You will learn how to prepare data for analysis, perform simple statistical analyses, create meaningful data visualizations, predict future trends from data, and more!

Syllabus

COURSE SYLLABUS

Module 1 - Importing Datasets

  • Learning Objectives
  • Understanding the Domain
  • Understanding the Dataset
  • Python package for data science
  • Importing and Exporting Data in Python
  • Basic Insights from Datasets

Module 2 - Cleaning and Preparing the Data

  • Identify and Handle Missing Values
  • Data Formatting
  • Data Normalization Sets
  • Binning
  • Indicator variables

Module 3 - Summarizing the Data Frame

  • Descriptive Statistics
  • Basic of Grouping
  • ANOVA
  • Correlation
  • More on Correlation

Module 4 - Model Development

  • Simple and Multiple Linear Regression
  • Model EvaluationUsingVisualization
  • Polynomial Regression and Pipelines
  • R-squared and MSE for In-Sample Evaluation
  • Prediction and Decision Making

Module 5 - Model Evaluation

  • Model Evaluation
  • Over-fitting, Under-fitting and Model Selection
  • Ridge Regression
  • Grid Search
  • Model Refinement

Taught by

Joseph Santarcangelo

Related Courses

Reviews

3.3 rating, based on 4 reviews

Start your review of Analyzing Data with Python

  • Profile image for Kurp
    Kurp

    Kurp completed this course, spending 6 hours a week on it and found the course difficulty to be easy.

    The list of topics is very intiguing and also ambitious. However the course is quite short - about 6 hours should be enough to complete it. In consequence, the course does not offer deep knowledge. You should rather consider it as a presentation of some concepts, which need to be studied further somewhere else. However it serves as a nice introduction to data exploration, cleaning and analysis.

    As edX edition of the course did not offer access to Graded Review Questions, I've moved to CognitiveClass platform (by IBM) where the course is currently available for free including certificates, without any limitations, in the exactly same formula as edX edition.
  • Ronny De Winter completed this course, spending 2 hours a week on it and found the course difficulty to be easy.

    Good concise content for using Python and its libraries to perform basic data analysis and machine learning.
    You can do the same course and learning path by IBM at https://cognitiveclass.ai/courses/data-analysis-python for free including the IBM certificate.
  • Jon Ingram is taking this course right now, spending 6 hours a week on it and found the course difficulty to be medium.

    This isn't a great interactive introduction to analysing data with Python. It is a decent lecture, I suppose, but the 'lab's are not interactive to any great extent, and the videos don't motivate you to actually go out and explore the dataset yourself.

    Thank you to the previous reviewer for mentioning that the full course (including the graded quizzes) is available for free on the CognitiveAI website (not one I've heard of before). It's just about bearable at a price of $0 -- I certainly wouldn't pay the $39 edX are asking for!
  • Anonymous
    This series of courses does not have engaging lectures, and the labs have many simple errors. Often, the labs use Python syntax that was not explained in the course lectures. The labs are mainly code that is already written, so I didn't feel I had enough chance to practice writing the code myself.

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free