Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Online Course

Analyse des données multidimensionnelles

Angrocampus Quest via France Université Numerique

(1)
12

Taken this course? Share your experience with other students. Write review

Overview

A propos du cours

Cette 6ème édition du cours d'analyse de données multidimensionnelles débutera le 2 mars 2020.

Ce cours vise à comprendre et appliquer les méthodes fondamentales de l'analyse des données : analyse en composantes principales, analyse factorielle des correspondances, analyse des correspondances multiples, classification ascendante hiérarchique. Une extension vers l'analyse factorielle multiple permettra d'aborder le traitement de données plus complexes (nouveauté par rapport à la première édition).

Conçu en vue des applications, ce cours donne une large place aux exemples et à la mise en œuvre logicielle (logiciel FactoMineR de R). La présentation des méthodes recourt le moins possible au formalisme mathématique en privilégiant l'approche géométrique.

L'objectif est de rendre les participants autonomes dans la mise en œuvre et l'interprétation d'analyses exploratoires multidimensionnelles.

Syllabus

Plan du cours

Semaine 1 : Analyse en composantes principales
  • Données, problématique et exemples
  • Recherche d'une représentation des individus
  • Interprétation de la représentation des individus grâce aux variables
  • Représentation des variables
  • Aides à l'interprétation
  • Mise en œuvre sous FactoMineR
Semaine 2 : Analyse factorielle des correspondances
  • Données, notations, questions
  • Liaison et indépendance entre deux variables qualitatives
  • Comment l'AFC appréhende-t-elle l'écart à l'indépendance ?
  • Nuages des lignes et des colonnes et leur représentation
  • Pourcentages d'inertie et inerties en AFC
  • Représentation simultanée des lignes et des colonnes
  • Aides à l'interprétation
  • Mise en œuvre sous FactoMineR
Semaine 3 : Analyse des correspondances multiples
  • Données, objectifs et problématique
  • Transformation du tableau des données
  • Représentation des individus
  • Représentation des modalités comme aide à l'interprétation de la représentation des individus
  • Nuage des modalités et sa représentation optimale
  • Représentation simultanée des deux nuages
  • Interprétation des valeurs propres
  • Représentation des variables
  • Aides à l'interprétation
  • Tableau de Burt
  • Mise en œuvre sous FactoMineR
Semaine 4 : Classification
  • Données, définitions
  • Principe de construction d'un arbre hiérarchique
  • Algorithme de partitionnement : les K-means
  • Consolidation des classes
  • Classification sur données de grande dimension
  • Analyse factorielle et classification
  • Caractérisation des classes d'individus
  • Mise en œuvre sous FactoMineR
Semaine 5 : Analyse Factorielle Multiple
  • Données, problématique
  • Equilibre des groupes et choix d'une pondération des variables
  • Etude et représentation des groupes de variables
  • Représentation des points partiels
  • Représentation des analyses séparées
  • Prise en compte de groupes de variables qualitatives
  • Prise en compte de tableaux de contingence
  • Aide à l'interprétation
  • Mise en œuvre sous FactoMineR

Taught by

François Husson and Jérôme Pagès

Review for France Université Numerique's Analyse des données multidimensionnelles Based on 1 reviews

  • 5 star 100%
  • 4 star 0%
  • 3 star 0%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review
  • 1
François H
by François completed this course, spending 5 hours a week on it and found the course difficulty to be hard.
Really helpful to visualize data with method such as Principal component analysis or clustering. There are lots of examples and exercises and the explanation to conduct the analysis with the R software were clear.

I highly recommend this course for students in science.
Was this review helpful to you? Yes
  • 1

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free