Launching into Machine Learning
via Pluralsight
Overview
Starting from a history of machine learning, we discuss why neural networks today perform so well in a variety of problems. We then discuss how to set up a supervised learning problem and find a good solution using gradient descent. This involves creating datasets that permit generalization; we talk about methods of doing so in a repeatable way so as to support experimentation.
Starting from a history of machine learning, we discuss why neural networks today perform so well in a variety of problems. We then discuss how to set up a supervised learning problem and find a good solution using gradient descent. This involves creating datasets that permit generalization; we talk about methods of doing so in a repeatable way so as to support experimentation.
Topics:
Starting from a history of machine learning, we discuss why neural networks today perform so well in a variety of problems. We then discuss how to set up a supervised learning problem and find a good solution using gradient descent. This involves creating datasets that permit generalization; we talk about methods of doing so in a repeatable way so as to support experimentation.
Topics:
- Introduction to Course
- Improve Data Quality and Exploratory Data Analysis
- Practical ML
- Optimization
- Generalization and Sampling
- Summary
- Course Resources
Taught by
Google Cloud