Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.


Supervised Machine Learning: Regression

IBM via Coursera


This course introduces you to one of the main types of modelling families of supervised Machine Learning: Regression. You will learn how to train regression models to predict continuous outcomes and how to use error metrics to compare across different models. This course also walks you through best practices, including train and test splits, and regularization techniques.

By the end of this course you should be able to:
Differentiate uses and applications of classification and regression in the context of supervised machine learning 
Describe and use linear regression models
Use a variety of error metrics to compare and select a linear regression model that best suits your data
Articulate why regularization may help prevent overfitting
Use regularization regressions: Ridge, LASSO, and Elastic net
Who should take this course?
This course targets aspiring data scientists interested in acquiring hands-on experience  with Supervised Machine Learning Regression techniques in a business setting.
What skills should you have?
To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Data Cleaning, Exploratory Data Analysis, Calculus, Linear Algebra, Probability, and Statistics.


  • Introduction to Supervised Machine Learning and Linear Regression
    • This module introduces a brief overview of supervised machine learning and its main applications: classification and regression. After introducing the concept of regression, you will learn its best practices, as well as how to measure error and select the regression model that best suits your data.
  • Data Splits and Cross Validation
    • There are a few best practices to avoid overfitting of your regression models. One of these best practices is splitting your data into training and test sets. Another alternative is to use cross validation. And a third alternative is to introduce polynomial features. This module walks you through the theoretical framework and a few hands-on examples of these best practices.
  • Regression with Regularization Techniques: Ridge, LASSO, and Elastic Net
    • This module walks you through the theory and a few hands-on examples of regularization regressions including ridge, LASSO, and elastic net. You will realize the main pros and cons of these techniques, as well as their differences and similarities.

Taught by

Mark J Grover and Miguel Maldonado

Related Courses


Start your review of Supervised Machine Learning: Regression

Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free