Calculus

Calculus

rootmath via YouTube Direct link

Welcome to Calculus 1

1 of 112

1 of 112

Welcome to Calculus 1

Class Central Classrooms beta

YouTube playlists curated by Class Central.

Classroom Contents

Calculus

Automatically move to the next video in the Classroom when playback concludes

  1. 1 Welcome to Calculus 1
  2. 2 1.1 Introduction to Limits
  3. 3 1.2 Estimating Limits
  4. 4 1.3 Limits that Fail to Exist [01] - |x|/x
  5. 5 1.3 Limit that Fails to Exist [02] - 1/x^2
  6. 6 1.3 Limits that Fail to Exist [03] - sin(1/x)
  7. 7 1.4 Properties of LImits
  8. 8 1.5 Solving Limits [01] (Factoring)
  9. 9 1.5 Solving Limits [02] (Rationalization)
  10. 10 1.5 Solving Limits [03] (Fractions)
  11. 11 1.6 Trig Limits [01] (1-cosx/x)
  12. 12 1.6 Trig Limits [02] (tanx/x & sin3x/x)
  13. 13 1.7 Limit Definition - Epsilon Delta [01] (NEW)
  14. 14 1.7 Limit Definition - Epsilon Delta [02]
  15. 15 1.7 Epsilon Delta Limit Definition [03] (example 1)
  16. 16 1.7 Proving a Limit: x^2 = 4 (advanced)
  17. 17 1.8 One Sided Limits
  18. 18 1.8 One Sided Limit (example 1)
  19. 19 1.8 Continuity
  20. 20 1.8 Continuity (example 1)
  21. 21 1.6 Trig Limits [03] Proof of sinx/x
  22. 22 1.9 Geometric Interpretation of sec(x) and tan(x)
  23. 23 1.9 Geometry of [1 - cos(x)/x]
  24. 24 1.9 Problem Solving [01]
  25. 25 1.9 Problem Solving [02]
  26. 26 2.1 - Definition of the Derivative
  27. 27 2.1 Finding the Slope of a Tangent Line - Example 1
  28. 28 2.1 Finding the Slope of Tangent Line - Example 2
  29. 29 2.1 Finding the Slope of a Tangent Line - Example 3
  30. 30 2.2 Function vs. Derivative - Example 1
  31. 31 2.2 Function vs. Derivative - Example 2
  32. 32 2.2 Function vs. Derivative - Example 3
  33. 33 2.3 Derivative of a Constant
  34. 34 2.3 Power Rule
  35. 35 2.4 Derivative of sin(x)
  36. 36 2.4 Derivatives - Trig Functions
  37. 37 2.5 Product Rule
  38. 38 2.6 Chain Rule (function notation)
  39. 39 2.6 Chain Rule (Leibniz notation)
  40. 40 2.6 Chain Rule - Example 1 - e^(2x)
  41. 41 2.6 Chain Rule - Example 2 - sin(x^2 + 1)
  42. 42 2.6 Chain Rule - Example 3 - Advanced
  43. 43 2.7 Quotient Rule 01
  44. 44 2.7 Quotient Rule 02
  45. 45 2.8 Introduction to Implicit Differentiation
  46. 46 2.8 Implicit Differentation (example 1)
  47. 47 2.8 Implicit Differentiation (example 2) - ln(x)
  48. 48 2.8 Derivative of arcsin(x)
  49. 49 2.8 Derivative of arcsec(x)
  50. 50 2.9 Related Rates Introduction
  51. 51 2.9 Relates Rates Example 01 (Filling a Pool)
  52. 52 2.9 Related Rates Example 02 (Filling a Trough)
  53. 53 2.9 Related Rates Example 03 (Security Laser Part 1)
  54. 54 2.9 Related Rates Example 03 (Security Laser Part 2)
  55. 55 2.9 Related Rates Example 04 (Man walking with his shadow)
  56. 56 3.1 Introduction to Extrema
  57. 57 3.1 Extrema Example
  58. 58 3.1 Critical Numbers
  59. 59 3.2 Finding Critical Numbers [Example 1]
  60. 60 3.2 Finding Critical Numbers [Example 2]
  61. 61 3.2 Finding Critical Numbers [Example 3]
  62. 62 3.2 Finding Critical Numbers [Example 4]
  63. 63 3.2 Finding Critical Numbers [Example 5]
  64. 64 3.3 Rolle's Theorem
  65. 65 3.3 Mean Value Theorem
  66. 66 3.3 Mean Value Thereom Example (prove a car was speeding)
  67. 67 3.4 First Derivative Test [Example 1]
  68. 68 3.4 First Derivative Test [Example 2] (Part 1)
  69. 69 3.4 First Derivative Test [Example 2] (Part 2)
  70. 70 3.5 Introduction to Concavity
  71. 71 3.5 Concavity and the Second Derivative [1]
  72. 72 3.5 Inflection Points
  73. 73 3.5 Concavity and the Second Derivative [2]
  74. 74 3.6 Optimization - Box with max volume (Part 1)
  75. 75 3.6 Optimization - Box with max volume (Part 2)
  76. 76 3.6 Optimization 02 (circle and square with maximum area)
  77. 77 3.7 Linear Approximation
  78. 78 4.1 Introduction to Antiderivatives
  79. 79 4.1 Antiderivative Power Rule
  80. 80 4.1 Basic Properties of Antiderivatives
  81. 81 4.1 Common Antiderivatives
  82. 82 4.2 Intro to Area Under a Curve
  83. 83 Summation Formulas and Sigma Notation (Part 1) Notation
  84. 84 Summation Formulas and Sigma Notation (Part 2) Formulas
  85. 85 Summation Formulas and Sigma Notation (Part 3) Advanced Properties
  86. 86 Summation Formulas and Sigma Notation (Part 4) Examples
  87. 87 4.2 Estimating the Area Under a Curve
  88. 88 4.3 Exact Area Under A Curve
  89. 89 4.3 Exact Area Under a Curve 02
  90. 90 4.3 Exact Area - Left Hand Sum
  91. 91 4.3 Exact Area Under a Curve 3
  92. 92 4.4 Riemann Sum and the Definite Integral
  93. 93 4.5 First Fundamental Thereom of Calculus
  94. 94 4.5 First Fundamental Theorem of Calculus (Examples)
  95. 95 4.6 Properties of Integrals
  96. 96 4.6 Area Under the x-axis
  97. 97 4.6 Average Value of a Function
  98. 98 5.1 Integration: Re-Writing an Integral - Ex.1
  99. 99 5.1 Integration: Re-Writing an Integral - Ex.2
  100. 100 5.1 Integration: Re-Writing an Integral - Ex.3
  101. 101 5.2 Integration: U-Substitution - Ex.1
  102. 102 5.2 Integration: U-Substitution - Ex.2
  103. 103 5.2 Integration: U-Substitution - Ex.3
  104. 104 5.2 Integration | U-Substitution - Ex. 4
  105. 105 5.2 Integration | U-Substitution - Ex. 5
  106. 106 5.2 Integration | U-Substitution - Ex.6
  107. 107 5.3 Integration | Natural Log (ln) - Ex.1
  108. 108 5.3 Integration | Natural Log (ln) - Ex.2
  109. 109 5.3 Integration | Natural Log (ln) - Ex.3
  110. 110 5.3 Integration | Natural Log (ln) - Ex. 4
  111. 111 5.4 Integration | Integral of secx
  112. 112 5.4 Integration | Integral of tanx

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.