Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Microcredential

Clinical Data Science

University of Colorado System via Coursera Specialization

(0)

Taken this course? Share your experience with other students. Write review

Overview

Are you interested in how to use data generated by doctors, nurses, and the healthcare system to improve the care of future patients? If so, you may be a future clinical data scientist! This specialization provides learners with hands on experience in use of electronic health records and informatics tools to perform clinical data science. This series of six courses is designed to augment learner’s existing skills in statistics and programming to provide examples of specific challenges, tools, and appropriate interpretations of clinical data. By completing this specialization you will know how to: 1) understand electronic health record data types and structures, 2) deploy basic informatics methodologies on clinical data, 3) provide appropriate clinical and scientific interpretation of applied analyses, and 4) anticipate barriers in implementing informatics tools into complex clinical settings. You will demonstrate your mastery of these skills by completing practical application projects using real clinical data. This specialization is supported by our industry partnership with Google Cloud. Thanks to this support, all learners will have access to a fully hosted online data science computational environment for free! Please note that you must have access to a Google account (i.e., gmail account) to access the clinical data and computational environment.

Syllabus

Course 1: Introduction to Clinical Data Science
- This course will prepare you to complete all parts of the Clinical Data Science Specialization. In this course you will learn how clinical data are generated, the format of these data, and the ethical and legal restrictions on these data. You will also learn enough SQL and R programming skills to be able to complete the entire Specialization - even if you are a beginner programmer. While you are taking this course you will have access to an actual clinical data set and a free, online computational environment for data science hosted by our Industry Partner Google Cloud. At the end of this course you will be prepared to embark on your clinical data science education journey, learning how to take data created by the healthcare system and improve the health of tomorrow's patients.

Course 2: Clinical Data Models and Data Quality Assessments
- This course aims to teach the concepts of clinical data models and common data models. Upon completion of this course, learners will be able to interpret and evaluate data model designs using Entity-Relationship Diagrams (ERDs), differentiate between data models and articulate how each are used to support clinical care and data science, and create SQL statements in Google BigQuery to query the MIMIC3 clinical data model and the OMOP common data model.

Course 3: Identifying Patient Populations
- This course teaches you the fundamentals of computational phenotyping, a biomedical informatics method for identifying patient populations. In this course you will learn how different clinical data types perform when trying to identify patients with a particular disease or trait. You will also learn how to program different data manipulations and combinations to increase the complexity and improve the performance of your algorithms. Finally, you will have a chance to put your skills to the test with a real-world practical application where you develop a computational phenotyping algorithm to identify patients who have hypertension. You will complete this work using a real clinical data set while using a free, online computational environment for data science hosted by our Industry Partner Google Cloud.

Course 4: Clinical Natural Language Processing
- This course teaches you the fundamentals of clinical natural language processing (NLP). In this course you will learn the basic linguistic principals underlying NLP, as well as how to write regular expressions and handle text data in R. You will also learn practical techniques for text processing to be able to extract information from clinical notes. Finally, you will have a chance to put your skills to the test with a real-world practical application where you develop text processing algorithms to identify diabetic complications from clinical notes. You will complete this work using a free, online computational environment for data science hosted by our Industry Partner Google Cloud.

Course 5: Predictive Modeling and Transforming Clinical Practice
- This course teaches you the fundamentals of transforming clinical practice using predictive models. This course examines specific challenges and methods of clinical implementation, that clinical data scientists must be aware of when developing their predictive models.

Course 6: Advanced Clinical Data Science
- This course prepares you to deal with advanced clinical data science topics and techniques including temporal and research quality analysis.

Taught by

Laura K. Wiley, PhD and Michael G. Kahn, MD, PhD

Help Center

Most commonly asked questions about Coursera

Reviews for Coursera's Clinical Data Science Based on 0 reviews

  • 5 star 0%
  • 4 star 0%
  • 3 star 0%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free