Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Online Course

Machine Learning

The University of Texas at Austin via edX

87
Found in Machine Learning

Taken this course? Share your experience with other students. Write review

Overview

Tools from machine learning are now ubiquitous in the sciences with applications in engineering, computer vision, and biology, among others. This class introduces the fundamental mathematical models, algorithms, and statistical tools needed to perform core tasks in machine learning. Applications of these ideas are illustrated using programming examples on various data sets.

Topics include pattern recognition, PAC learning, overfitting, decision trees, classification, linear regression, logistic regression, gradient descent, feature projection, dimensionality reduction, maximum likelihood, Bayesian methods, and neural networks.

Syllabus

Mistake Bounded Learning (1 week)
Decision Trees; PAC Learning (1 week)
Cross Validation; VC Dimension; Perceptron (1 week)
Linear Regression; Gradient Descent (1 week)
Boosting (.5 week)
PCA; SVD (1.5 weeks)
Maximum likelihood estimation (1 week)
Bayesian inference (1 week)
K-means and EM (1-1.5 week)
Multivariate models and graphical models (1-1.5 week)
Neural networks; generative adversarial networks (GAN) (1-1.5 weeks)

Taught by

Adam Klivans and Qiang Liu

Help Center

Most commonly asked questions about EdX

Reviews for edX's Machine Learning Based on 0 reviews

  • 5 star 0%
  • 4 star 0%
  • 3 star 0%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free