Online Course
Robotics: Dynamics and Control
University of Pennsylvania via edX
-
260
-
- Write review
Overview
Flying drones or robot manipulators accomplish heavy-duty tasks that deal with considerable forces and torques not covered by a purely robot kinematics framework. Learn how to formulate dynamics problems and design appropriate control laws.
In this course, part of the Robotics MicroMasters program, you will learn how to develop dynamic models of robot manipulators, mobile robots, and drones (quadrotors), and how to design intelligent controls for robotic systems that can grasp and manipulate objects.
We will cover robot dynamics, trajectory generation, motion planning, and nonlinear control, and develop real-time planning and control software modules for robotic systems. This course will give you the basic theoretical tools and enable you to design control algorithms.
Using MATLAB, you will apply what you have learned through a series of projects involving real-world robotic systems.
Syllabus
Week 1: Introduction and Course Overview
Week 2: Rigid Body Dynamics
Week 3: Dynamics of Robot Arms
Week 4: Project #1: Modeling of a Robot Arm
Week 5: Introduction to Linear Control
Week 6: State Space Modeling and Multivariable Systems
Week 7: Nonlinear Control
Week 8: Stability Theory
Week 9: Project #2: Control and Trajectory Following for a Mobile Robot
Week 10: Quadrotor Control
Week 11: Trajectory Generation
Week 12: Project #3: Planning and Control of a Quadrotor
Taught by
Vijay Kumar
Related Courses
-
Modern Robotics, Course 3: Robot Dynamics
Northwestern University
-
Robotics and Control : Theory and Practice
Indian Institute of Technology Roorkee, NPTEL
-
Modern Robotics: Mechanics, Planning, and Control
Northwestern University
-
Spacecraft Dynamics and Control
University of Colorado Boulder
-
Modern Robotics, Course 4: Robot Motion Planning and Control
Northwestern University
-
Robotics: Aerial Robotics
University of Pennsylvania
3.9
Reviews
0.0 rating, based on 0 reviews