Class Central Tips
The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data.
The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models.
Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.