Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of Illinois at Urbana-Champaign

Predictive Analytics and Data Mining

University of Illinois at Urbana-Champaign via Coursera


This course introduces students to the science of business analytics while casting a keen eye toward the artful use of numbers found in the digital space. The goal is to provide businesses and managers with the foundation needed to apply data analytics to real-world challenges they confront daily in their professional lives. Students will learn to identify the ideal analytic tool for their specific needs; understand valid and reliable ways to collect, analyze, and visualize data; and utilize data in decision making for their agencies, organizations or clients.


  • Module 0: Get Ready & Module 1: Drowning in Data, Starving for Knowledge
    • This module will introduce you to the most common and important unsupervised learning technique – Clustering. You will have an understanding of different applications of clustering analysis after this module. You will also learn when we need clustering and why it is important. Then, you will be introduced to a variety of clustering methods.
  • Module 2: Decision Trees
    • In this module, we will discuss how to use decision trees to represent knowledge. The module concludes with a presentation of the Random Forest method that overcomes some of the limitations (such as high variance or low precision) of a single decision tree constructed from data.
  • Module 3: Rules, Rules, and More Rules
    • This module will focus on three key topics, namely rules, nearest neighbor methods, and Bayesian methods. Over the course of this module, you will be exposed to how rules factor into the world of data and how they play a role in the analysis of data. The second and third topics focus on the classification of data.
  • Module 4: Model Performance and Recommendation Systems
    • In this module, you will study tools for recognizing what to recommend, and identify cross-sell or upsell opportunities. As the last module of the course, we will wrap up the content so far and you will get an opportunity to practice on your own and learn how to adapt these models to drive business impact in your own organizations.

Taught by

Sridhar Seshadri


4.4 rating at Coursera based on 129 ratings

Start your review of Predictive Analytics and Data Mining

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.