Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.


Linear Algebra for Data Science in R

via DataCamp


This course is an introduction to linear algebra, one of the most important mathematical topics underpinning data science.

Linear algebra is one of the most important set of tools in applied mathematics and data science. In this course, you’ll learn how to work with vectors and matrices, solve matrix-vector equations, perform eigenvalue/eigenvector analyses and use principal component analysis to do dimension reduction on real-world datasets. All analyses will be performed in R, one of the world’s most-popular programming languages.


  • Introduction to Linear Algebra
    • In this chapter, you will learn about the key objects in linear algebra, such as vectors and matrices. You will understand why they are important and how they interact with each other.
  • Matrix-Vector Equations
    • Many machine learning algorithms boil down to solving a matrix-vector equation. In this chapter, you learn what matrix-vector equations are trying to accomplish and how to solve them in R.
  • Eigenvalues and Eigenvectors
    • Matrix operations are complex. Eigenvalue/eigenvector analyses allow you
      to decompose these operations into simpler ones for the sake of image recognition, genomic analysis, and more!
  • Principal Component Analysis
    • “Big Data” is ubiquitous in data science and its applications. However, redundancy in these datasets can be problematic. In this chapter, we learn about principal component analysis and how it can be used in dimension reduction.

Taught by

Eric Eager


Start your review of Linear Algebra for Data Science in R

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.

Someone learning on their laptop while sitting on the floor.