Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Google Cloud

Production Machine Learning Systems

Google Cloud and Google via Coursera


In the second course of this specialization, we will dive into the components and best practices of a high-performing ML system in production environments.

Prerequisites: Basic SQL, familiarity with Python and TensorFlow


  • Welcome to the course
    • In this module we will preview the topics covered in the course and how to use Qwiklabs to complete each of your labs using Google Cloud Platform.
  • Architecting Production ML Systems
    • In this module, we’ll talk about what else a production ML system needs to do and how you can meet those needs. We’ll then review some important, high-level, design decisions around training and model serving that you’ll need to make in order to get the right performance profile for your model.
  • Ingesting data for Cloud-based analytics and ML
    • In this module, we’ll talk about how to bring your data to the cloud. There are many ways to bring your data into cloud to power your machine learning models. We’ll first review why your data needs to be on the cloud to get the advantages of scale and using fully-managed services and what options you have to bring your data over.
  • Designing Adaptable ML systems
    • In this module, we’ll learn how to recognize the ways that our model is dependent on our data, make cost-conscious engineering decisions, know when to roll back our models to earlier versions, debug the causes of observed model behavior and implement a pipeline that is immune to one type of dependency.
  • Designing High-performance ML systems
    • In this module, you will learn how to identify performance considerations for machine learning models.

      Machine learning models are not all identical. For some models, you will be focused on improving I/O performance, and on others, you will be focused on squeezing out more computational speed.

  • Hybrid ML systems
    • Understand the tools and systems available and when to leverage hybrid machine learning models.
  • Course Summary
    • Review the content covered in the modules on Production ML systems

Taught by

Google Cloud Training

Related Courses


1.0 rating, based on 1 reviews

Start your review of Production Machine Learning Systems

  • Profile image for Jakub Bartczuk
    Jakub Bartczuk

    Jakub Bartczuk completed this course.

    The video content is ok, but the assignments and quizzes are abysmal - they don't really test anything, labs have some sections that don't work, and the supposed TODO sections don't exist.

    I definitely don't recommend this course if you're not going to apply this stuff immediately (so you can actually go through lab resources on your own data)

Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free