
Mathematics for Computer Science
Massachusetts Institute of Technology via MIT OpenCourseWare
-
144
-
- Write review
Overview

Syllabus
Lec 1 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 2 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 3 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 4 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 5 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 6 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 7 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 8 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 9 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 10 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 11 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 12 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 13 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 14 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 15 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 16 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 17 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 18 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 19 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 20 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 21 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 22 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 23 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 24 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Lec 25 | MIT 6.042J Mathematics for Computer Science, Fall 2010.
Taught by
Prof. Albert R. Meyer and Prof. Adam Chlipala
Tags
Reviews
4.0 rating, based on 1 Class Central review
-
The "Mathematics for Computer Science" online course from MIT is an exceptional resource for anyone delving into the intersection of math and computer science. Covering discrete mathematics, logic, combinatorics, and graph theory, it provides a solid foundation for algorithm design, cryptography, and computational complexity. The lectures are comprehensive, well-structured, and complemented by challenging problem sets to test understanding. As a free resource, its accessibility is unparalleled, though it demands strong commitment due to its rigor. Highly recommended for students and professionals looking to enhance their theoretical understanding of computer science concepts. A top-rated course for its depth and clarity!