Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

EIT Digital

Quantitative Formal Modeling and Worst-Case Performance Analysis

EIT Digital via Coursera


Welcome to Quantitative Formal Modeling and Worst-Case Performance Analysis. In this course, you will learn about modeling and solving performance problems in a fashion popular in theoretical computer science, and generally train your abstract thinking skills.

After finishing this course, you have learned to think about the behavior of systems in terms of token production and consumption, and you are able to formalize this thinking mathematically in terms of prefix orders and counting functions. You have learned about Petri-nets, about timing, and about scheduling of token consumption/production systems, and for the special class of Petri-nets known as single-rate dataflow graphs, you will know how to perform a worst-case analysis of basic performance metrics, like throughput, latency and buffering.

Disclaimer: As you will notice, there is an abundance of small examples in this course, but at first sight there are not many industrial size systems being discussed. The reason for this is two-fold. Firstly, it is not my intention to teach you performance analysis skills up to the level of what you will need in industry. Rather, I would like to teach you to think about modeling and performance analysis in general and abstract terms, because that is what you will need to do whenever you encounter any performance analysis problem in the future. After all, abstract thinking is the most revered skill required for any academic-level job in any engineering discipline, and if you are able to phrase your problems mathematically, it will become easier for you to spot mistakes, to communicate your ideas with others, and you have already made a big step towards actually solving the problem. Secondly, although dataflow techniques are applicable and being used in industry, the subclass of single-rate dataflow is too restrictive to be of practical use in large modeling examples. The analysis principles of other dataflow techniques, however, are all based on single-rate dataflow. So this course is a good primer for any more advanced course on the topic.

This course is part of the university course on Quantitative Evaluation of Embedded Systems (QEES) as given in the Embedded Systems master curriculum of the EIT-Digital university, and of the Dutch 3TU consortium consisting of TU/e (Eindhoven), TUD (Delft) and UT (Twente). The course material is exactly the same as the first three weeks of QEES, but the examination of QEES is at a slightly higher level of difficulty, which cannot (yet) be obtained in an online course.


  • Introduction
    • This course is part of a Blended Master Programme in Embedded Systems.
  • Modeling systems as token consumption/production systems
    • In this module/week you will learn to draw a model of a token consumption/production system, and communicate your interpretation of this model with others in an informal manner. At the end of this model, you will be able to draw your own models, and explain your interpretation of them in general terms. Also, you will know about the standard Petri-net interpretation of consumption/production systems, and will be able to point out particular patterns in Petri-net models. Finally, you will be able to refine a consumption/production model into a model that contains sufficient information to allow worst-case performance analysis. This is all tested using a peer-reviewed assignment.
  • Syntax and semantics
    • In this module/week, you will be really training your abstract thinking skills. After finishing this module, you will have learned how to formalize the behavior of any dynamical system as a prefix order, and how to formalize the interpretation of a consumption/production system as a counting function on such a prefix order. You understand how the Petri-net interpretation puts certain restrictions on these counting functions, and how you can exploit those restrictions to prove properties about Petri-net interpretations, without knowing the actual interpretation itself. At the end of the module, you will practice the formalization of performance metrics as logical properties of counting functions, by recognizing right and wrong examples of formalization.

      Those who are already familiar with Petri-net theory, may find that the prefix order semantics that I introduce in this course is slightly different from what they are used to. Traditional Petri-net semantics is usually based on markings, transition systems, or the execution trees thereoff. Execution trees are a particular example of a prefix order, but in general prefix orders offer the added flexibility that they do not restrict the user to discrete interpretations of behavior only. This is particularly suitable when seeking connection between theoretical computer science and an application field like embedded systems, from which this course originates, where also the continuous behavior of physical systems has to be taken into account.
  • Performance analysis
    • In this module/week you will learn to exploit the structure of single-rate dataflow graphs to perform worst-case analysis of performance metrics like throughput, latency and buffering. After this week, you know how to calculate the maximum cycle mean of a dataflow graph, how to construct a periodic schedule for it, how to optimize this schedule for latency analysis, and how to determine the size of buffers with back-pressure such that the worst-case analysis remains valid. If you understood the material of the previous module/week, the proofs presented in this week will give you a deeper understanding of the mathematical underpinning of these methods.
  • One final example
    • In this last week, we just discuss one more example, following the outline of the peer-reviewed assignment of the first module/week. It's just a little summary, combining everything we have learned so far, and there is some additional reading material to trigger an appetite for further discovery.

Taught by Pieter Cuijpers


3.0 rating, based on 3 Class Central reviews

4.4 rating at Coursera based on 42 ratings

Start your review of Quantitative Formal Modeling and Worst-Case Performance Analysis

  • Anonymous

    Anonymous completed this course.

    Excellent course. Both challenging and interesting at the same time. Also the teacher has a very clear and engaging style. I would thoroughly recommend this course.
  • Pierrick Loubier completed this course.

  • Profile image for Alex Ivanov
    Alex Ivanov

    Alex Ivanov completed this course.

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.