Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

Online Course

FA19: Deterministic Optimization

Georgia Institute of Technology via edX


This course may be unavailable.

Go to class

Taken this course? Share your experience with other students. Write review


This course blends optimization theory and computation and its teachings can be applied to modern data analytics, economics, and engineering. Organized across four modules, it takes learners through basic concepts, models, and algorithms in linear optimization, convex optimization, and integer optimization. 

The first module of the course is a general overview of key concepts in linear algebra, calculus, and optimization. The second module of the course is on linear optimization, covering modeling techniques with many applications, basic polyhedral theory, simplex method, and duality theory. The third module is on convex conic optimization, which is a significant generalization of linear optimization. The fourth and final module focuses on integer optimization, which augments the previously covered optimization models with the flexibility of integer decision variables.


Week 1

  • Module 1: Introduction
  • Module 2: Illustration of the Optimization Problems

Week 2

  • Module 3: Review of Mathematical Concepts
  • Module 4: Convexity

Week 3

  • Module 5: Outcomes of Optimization
  • Module 6: Optimality Certificates

Week 4

  • Module 7: Unconstrained Optimization: Derivate Based
  • Module 8: Unconstrained Optimization: Derivative Free

Week 5

  • Module 9: Linear Optimization Modeling – Network Flow Problems
  • Module 10: Linear Optimization Modeling – Electricity Markets

Week 6

  • Module 11: Linear Optimization Modeling – Decision-Making Under Uncertainty
  • Module 12: Linear Optimization Modeling – Handling Nonlinearity 

Week 7

  • Module 13: Geometric Aspects of Linear Optimization
  • Module 14: Algebraic Aspect of Linear Optimization


Week 8

  • Module 15: Simplex Method in a Nutshell
  • Module 16: Further Development of Simplex Method

Week 9

  • Module 17: Linear Programming Duality
  • Module 18: Robust Optimization

Week 10

  • Module 19: Nonlinear Optimization Modeling – Approximation and Fitting
  • Module 20: Nonlinear Optimization Modeling – Statistical Estimation

Week 11

  • Module 21: Convex Conic Programming – Introduction
  • Module 22: Second-Order Conic Programming – Examples

Week 12

  • Module 23: Second-Order Conic Programming – Advanced Modeling
  • Module 24: Semi-definite Programming – Advanced Modeling

Week 13

  • Module 25: Discrete Optimization: Introduction
  • Module 26: Discrete Optimization: Modeling with binary variables - 1

Week 14

  • Module 27: Discrete Optimization: Modeling with binary variables – 2
  • Module 28: Discrete Optimization: Modeling exercises

Week 15

  • Module 29: Discrete Optimization: Linear programming relaxation
  • Module 30: Discrete Optimization: Solution methods

Taught by

Andy Sun

Help Center

Most commonly asked questions about EdX

Reviews for edX's FA19: Deterministic Optimization Based on 4 reviews

  • 5 star 0%
  • 4 stars 50%
  • 3 stars 50%
  • 2 star 0%
  • 1 star 0%

Did you take this course? Share your experience with other students.

Write a review
  • 1
Anonymous completed this course.
This course (run in early 2018) broke the enrollment clause stating "Audit this course for free and have complete access to all the course material, activities, tests, and forums". There was no midterm and final exams for Audit students. Therefore I was not able to obtain even a symbolic passing grade,...
Was this review helpful to you? Yes
Stiven S
Stiven completed this course and found the course difficulty to be medium.
The course is an introduction to deterministic optimization, the topics covered range from non-constrained optimization (the most basic one) to basic algorithms for integer programming, central topics like convexity and applications are also included. Mostly Python is used for solving the problems making used of several open source libraries, MATLAB was briefly mentioned but in my opinion Python is better for this field. The quality of the lectures is very good, and the peer review assessments allow students to have a sort of personalized feedback.

I think this was the first run of the course, so there is room for improvement in a few aspects. The communication between the staff and the students is very poor, we almost never got answer from them, a number of topics in the syllabus were not presented and the order of the topics was changed in some occasions, I was particularly disappointed during the last modules.
Was this review helpful to you? Yes
Salmo S
Salmo completed this course and found the course difficulty to be medium.
This course was a basic course to understand linear optimization and methods to reformulate large linear or non-linear models to a solvable/linear model. The course assignments are half theoretical and half computational using Python or MATLAB. I wish it had a second part working more with non-linear models and available tools for nonlinear optimization in Python.

Major problems of the course are lack of STAFF communications on changes/updates and the management of the errors happened by homework submissions and corrections, which were at times nerve racking. Also the syllabus could be more accurate and organized.
Was this review helpful to you? Yes
Mohamed C
by Mohamed is taking this course right now, spending 8 hours a week on it and found the course difficulty to be medium.
The introductory text says there 4 modules, but the syllabus shows that there are 14 modules.

Please correct or explain the discrepancy.
Was this review helpful to you? Yes
  • 1

Class Central

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free

Never stop learning Never Stop Learning!

Get personalized course recommendations, track subjects and courses with reminders, and more.

Sign up for free