Class Central is learner-supported. When you buy through links on our site, we may earn an affiliate commission.

University of Michigan

Inferential Statistical Analysis with Python

University of Michigan via Coursera

This course may be unavailable.


In this course, we will explore basic principles behind using data for estimation and for assessing theories. We will analyze both categorical data and quantitative data, starting with one population techniques and expanding to handle comparisons of two populations. We will learn how to construct confidence intervals. We will also use sample data to assess whether or not a theory about the value of a parameter is consistent with the data. A major focus will be on interpreting inferential results appropriately.

At the end of each week, learners will apply what they’ve learned using Python within the course environment. During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera.

Taught by

Brenda Gunderson, Brady T. West and Kerby Shedden


5.0 rating, based on 1 Class Central review

Start your review of Inferential Statistical Analysis with Python

  • Kai
    This "Inferential Statistical Analysis with Python" course went in depth into the topics of confidence interval and hypothesis testing in ways that were not covered in school. You will learn how to perform hypothesis tests for key areas such as :…

Never Stop Learning.

Get personalized course recommendations, track subjects and courses with reminders, and more.